Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add filters

Language
Document Type
Year range
1.
biorxiv; 2024.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2024.03.04.583260

ABSTRACT

HLA-E expression plays a central role for modulation of NK cell function by interaction with inhibitory NKG2A and stimulatory NKG2C receptors on canonical and adaptive NK cells, respectively. Here, we demonstrate that infection of human primary lung tissue with SARS-CoV-2 leads to increased HLA-E expression and show that processing of the peptide YLQPRTFLL from the spike protein is primarily responsible for the strong, dose-dependent increase of HLA-E. Targeting the peptide site within the spike protein revealed that a single point mutation was sufficient to abrogate the increase in HLA-E expression. Spike-mediated induction of HLA-E differentially affected NK cell function: whereas degranulation, IFN-gamma production, and target cell cytotoxicity were enhanced in NKG2C+ adaptive NK cells, effector functions were inhibited in NKG2A+ canonical NK cells. Analysis of a cohort of COVID-19 patients in the acute phase of infection revealed that adaptive NK cells were induced irrespective of the HCMV status, challenging the paradigm that adaptive NK cells are only generated during HCMV infection. During the first week of hospitalization, patients exhibited a selective increase of early NKG2C+CD57- adaptive NK cells whereas mature NKG2C+CD57+ cells remained unchanged. Further analysis of recovered patients suggested that the adaptive NK cell response is primarily driven by a wave of early adaptive NK cells during acute infection that wanes once the infection is cleared. Together, this study suggests that NK cell responses to SARS-CoV-2 infection are majorly influenced by the balance between canonical and adaptive NK cells via the HLA-E/NKG2A/C axis.


Subject(s)
Infections , COVID-19
2.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.04.08.22273605

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes coronavirus disease 2019 (COVID-19) and an ongoing global pandemic. Despite the development of vaccines, which protect healthy people from severe and life-threatening COVID-19, the immunological responses of people with secondary immunodeficiencies to SARS-CoV-2 mRNA vaccines are currently not well understood. Human Immunodeficiency Virus (HIV), causing acquired immunodeficiency syndrome (AIDS), targets CD4+ T helper (Th) cells that orchestrate the immune response. Anti-retroviral therapy suppresses HIV burden and restores Th cell numbers. Here, we investigated the humoral and cellular immune responses elicited by the BTN162b2 vaccine in a cohort of people living with HIV (PLWH), who receive anti-retroviral therapy. While antibody responses in PLWH increased progressively after the first and second vaccination compared to baseline, they were reduced compared to HIV negative study participants (controls). CD8+ T cells exhibited a general activated phenotype and increased effector and effector memory compartments. In contrast, CD4+ Th cell responses exhibited a vaccination-dependent increase and were comparable between PLWH and controls. In line with their reduced humoral response, the correlation between neutralizing antibodies and the CD4+ T cell response was decreased in PLWH compared to healthy controls. Interestingly, CD4+ T cell activation negatively correlated with the CD4 to CD8 ratio, indicating that low CD4 T cell numbers do not necessarily interfere with cellular immune responses. Taken together, our data demonstrate that COVID-19 mRNA vaccination in PLWH results in potent cellular immune responses, but the reduced antibody responses suggest that booster vaccination might be required for preventing disease.


Subject(s)
Coronavirus Infections , HIV Infections , Immunologic Deficiency Syndromes , COVID-19
3.
arxiv; 2021.
Preprint in English | PREPRINT-ARXIV | ID: ppzbmed-2111.08000v1

ABSTRACT

In this position paper, a large group of interdisciplinary experts outlines response strategies against the spread of SARS-CoV-2 in the winter of 2021/2022 in Germany. We review the current state of the COVID-19 pandemic, from incidence and vaccination efficacy to hospital capacity. Building on this situation assessment, we illustrate various possible scenarios for the winter, and detail the mechanisms and effectiveness of the non-pharmaceutical interventions, vaccination, and booster. With this assessment, we want to provide orientation for decision makers about the progress and mitigation of COVID-19.


Subject(s)
COVID-19
5.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.05.13.20100636

ABSTRACT

Identification of immunogenic targets of SARS-CoV-2 is crucial for monitoring of antiviral immunity and vaccine design. Currently, mainly anti-spike (S)-protein adaptive immunity is investigated. However, also the nucleocapsid (N)- and membrane (M)-proteins should be considered as diagnostic and prophylactic targets. The aim of our study was to explore and compare the immunogenicity of SARS-CoV-2 S-, M- and N-proteins in context of different COVID-19 manifestations. Analyzing a cohort of COVID-19 patients with moderate, severe, and critical disease severity, we show that overlapping peptide pools (OPP) of all three proteins can activate SARS-CoV-2-reactive T-cells with a stronger response of CD4+ compared to CD8+ T-cells. Although interindividual variations for the three proteins were observed, M-protein induced the highest frequencies of CD4+ T-cells, suggesting its relevance as diagnostic and vaccination target. Importantly, patients with critical COVID-19 demonstrated the strongest T-cell response, including the highest frequencies of cytokine-producing bi- and trifunctional T-cells, for all three proteins. Although the higher magnitude and superior functionality of SARS-CoV-2-reactive T-cells in critical patients can also be a result of a stronger immunogenicity provided by severe infection, it disproves the hypothesis of insufficient SARS-CoV-2-reactive immunity in critical COVID-19. To this end, activation of effector T-cells with differentiated memory phenotype found in our study could cause hyper-reactive response in critical cases leading to immunopathogenesis. Conclusively, since the S-, M-, and N-proteins induce T-cell responses with individual differences, all three proteins should be evaluated for diagnostics and therapeutic strategies to avoid underestimation of cellular immunity and to deepen our understanding of COVID-19 immunity.


Subject(s)
COVID-19
6.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.04.28.20083089

ABSTRACT

Background: The efficacy of the humoral and cellular immunity determines the outcome of viral infections. An appropriate immune response mediates protection, whereas an overwhelming immune response has been associated with immune-mediated pathogenesis in viral infections. The current study explored the general and SARS-CoV-2 specific cellular and humoral immune status in patients with different COVID-19 severities. Methods: In this prospective study, we included 53 patients with moderate, severe, and critical COVID-19 manifestations comparing their quantitative, phenotypic, and functional characteristics of circulating immune cells, SARS-CoV-2 antigen specific T-cells, and humoral immunity. Results: Significantly diminished frequencies of CD8+T-cells, CD4+ and CD8+T-cell subsets with activated differentiated memory/effector phenotype and migratory capacity were found in circulation in patients with severe and/or critical COVID-19 as compared to patients with moderate disease. Importantly, the improvement of the clinical courses from severe to moderate was accompanied by an improvement in the T-cell subset alterations. Furthermore, we surprisingly observed a detectable SARS-CoV-2-reactive T-cell response in all three groups after stimulation with SARS-CoV-2 S-protein overlapping peptide pool already at the first visit. Of note, patients with a critical COVID-19 demonstrated a stronger response of SARS-CoV-2-reactive T-cells producing Th1 associated inflammatory cytokines. Furthermore, clear correlation between antibody titers and SARS-CoV-2-reactive CD4+ frequencies underscore the role of specific immunity in disease progression. Conclusion: Our data demonstrate that depletion of activated memory phenotype circulating T-cells and a strong SARS-CoV-2-specific cellular and humoral immunity are associated with COVID-19 disease severity. This counter-intuitive finding may have important implications for diagnostic, therapeutic and prophylactic COVID-19 management.


Subject(s)
COVID-19 , Virus Diseases
SELECTION OF CITATIONS
SEARCH DETAIL